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Abstract

Silicon-photonics-based optical neural network (ONN) is a promising hardware
platform that could represent a paradigm shift in efficient AI with its CMOS-
compatibility, flexibility, ultra-low execution latency, and high energy efficiency.
In-situ training on the online programmable photonic chips is appealing but still en-
counters challenging issues in on-chip implementability, scalability, and efficiency.
In this work, we propose a closed-loop ONN on-chip learning framework L2ight
to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a
three-stage learning flow that first calibrates the complicated photonic circuit states
under challenging physical constraints, then performs photonic core mapping via
combined analytical solving and zeroth-order optimization. A subspace learning
procedure with multi-level sparsity is integrated into L2ight to enable in-situ gra-
dient evaluation and fast adaptation, unleashing the power of optics for real on-chip
intelligence. Extensive experiments demonstrate our proposed L2ight outperforms
prior ONN training protocols with 3-order-of-magnitude higher scalability and
over 30× better efficiency, when benchmarked on various models and learning
tasks. This synergistic framework is the first scalable on-chip learning solution that
pushes this emerging field from intractable to scalable and further to efficient for
next-generation self-learnable photonic neural chips. From a co-design perspective,
L2ight also provides essential insights for hardware-restricted unitary subspace
optimization and efficient sparse training. We open-source our framework at link.

1 Introduction

The escalating scales of deep learning models and datasets have brought increased demand for
computing capacities in electronic processors. Stringent performance and efficiency constraints
in practical applications raise a surging need to develop more efficient computing solutions. As a
promising substitute for conventional electronics, optical neural networks (ONNs) have attracted
extensive research interests owing to their sub-nanosecond latency and attojoule/multiply-accumulate
operation (MAC) energy efficiency [41, 6, 50, 40, 53, 14], shown in Figure 1(a).

However, robustness and trainability are still critical issues for photonic AI engines [57, 21, 59].
Due to the analog computing nature of ONNs, the photonic DNN model inevitably suffer from
performance degradation or even complete malfunction [57, 59] with the existence of manufacturing
errors, non-ideal device controls, and undesired circuit noises, shown in Figure 1(b). Though non-ideal
effects can be simulated and considered during software training [57, 21] to improve noise tolerance,
the variation simulation is physically inaccurate (especially with unknown process variations) and
prohibitively expensive, shown in Figure 1(c).
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Figure 1: Comprehensive motivations. (a) Computational efficiency superior-
ity of ONNs [41]. (b) Noise sensitivity of ONNs (Q: 8-bit quantization, CT:
crosstalk, DV: device variation, PB: phase bias). (c) Runtime of noise-free matrix
multiplication vs. w/ noise simulation (Q+CT+DV).

Recently, on-device train-
ing has become an appeal-
ing trend towards adapt-
able and self-learning
ONNs. However, training
on photonic neural chips
is non-trivial and much
less explored than on con-
ventional platforms. Prior
work [56, 24, 20, 17] only
demonstrated small proto-
types, and their scalability
and efficiency are rather
limited. To push the limits of DNNs in optics, we propose an efficient three-stage learning framework
L2ight that consists of variation-agnostic identity calibration, alternate projection-based parallel
mapping, and multi-level sparse subspace learning. The main contributions of this work are four-fold,

• Scalability. For the first time, an ONN learning protocol can scale up to million-level parameters
under practical circuit non-ideality, over 3-order-of-magnitude more scalable than prior arts.

• Efficiency. We explore multi-level sparsity in in-situ gradient evaluation to trim down unnecessary
on-chip training energy and runtime cost.

• Learnability. By trading redundant representability, our restricted subspace optimization can
provide ONNs with enough adaptability for on-device self-learning and task transfer.

• Robustness. Various practical device noises and process variations are considered in situ to
facilitate noise-resilient photonic AI engines.

• To our best knowledge, this is the first framework that supports on-chip training on million-
parameter ONNs, over 1000× more scalable and 30× more efficient than prior art. Our Py-
Torch [37] library for ONN on-chip training is open-sourced at link.

2 Related Work

Optical Neural Network and Training Methods. One of recent ONN architectures adopts singular
value decomposition (SVD) to implement matrix multiplication [41], i.e., y = Wx = UΣV ∗x. Cas-
caded 2-by-2 optical devices, i.e., Mach-Zehnder interferometers (MZIs), are used to construct unitary
matrices as the product of a series of 2-dimensional unitary rotators, U(n) = D

∏2
i=n

∏i−1
j=1 Rij(ϕij).

A detailed introduction to ONNs can be found in Appendix A. Beyond offline training [21], ONN
on-chip training methods are proposed to offload the process back onto photonics [24, 20, 17], shown
in Table 1. Brute-force device tuning (BFT) [41, 58] and evolutionary algorithms [56] are applied to
search MZI settings. An adjoint variable method (AVM) [24] is proposed to directly evaluate gradients
using in-situ light field monitoring. Stochastic zeroth-order optimization (ZOO) [20, 17] is later
applied to improve the training efficiency. However, prior methods are hard to scale to larger ONNs
either due to algorithmic inefficiency or unrealistic hardware complexity.

Table 1: Scalability comparison with prior ONN on-chip training protocols in terms of #Params they
can handle, used algorithm, resolution requirement (Req.), and circuit observability requirement. Coh.
I/O is short for coherent input/output [32, 55]. ZO, FO mean zeroth- and first-order methods.

BFT [41] PSO [56] AVM [24] FLOPS [20] MixedTrn [4] L2ight

#Params ∼100 ∼100 ∼100 ∼1000 ∼2500 ∼10 M
Algorithm ZO ZO FO ZO ZO ZO+FO
Resolution Req. Medium High Medium High Med Medium
Observability Req. Coh. I/O Coh. I/O Coh. I/O + Per device monitor Coh. I/O Coh. I/O Coh. I/O

Efficient NN Training Methods. Extensive work has been devoted to accelerating DNN training,
among which an important branch is sparse backpropagation. Previous methods mainly focus on
approximating matrix multiplication by sparsifying the pre-activation gradients [43], forward and
feedback matrices [1, 38], and input feature maps [36]. Quantization to the pre-activation gradients is
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adopted in [51] to induce sparsity by trading off quantization steps and performance. Other methods
also exist, e.g., distributed and low-precision training [2, 3, 25]. However, they are not readily
applicable to analog photonic engines, thus not in the scope of our discussion.

Subspace Neural Networks. Subspace neural networks are special DNN models with restricted
parameter space but demonstrate comparable representability to classical NNs. Sparse NNs [22, 49],
low-rank NNs [9, 27, 44], structured NNs [11, 29, 47], Fourier-domain NNs [18, 34, 33], and general
frequency-domain NNs [19] were introduced to trim down the redundancy in DNNs by restricting
the NN structure, matrix rank, numerical resolution, etc. In this work, we deeply explore the trade-off
between ONN learnability, trainability, and efficiency in the restricted unitary subspace.

Challenges of ONN On-Chip Training. As a unique hardware-restricted optimization problem,
ONN in-situ learning encounters fundamental challenges causing scalability issues in prior methods:

• Lack of full-observability for in-situ light field. Tracking physical optical field on every
waveguide in U and V ∗ is not scalable or practical when ONNs scale up. Per device light field
monitoring and calibration [16, 24] involves intractable hardware complexity. In practice, only Σ
can be precisely monitored and efficiently tuned.

• Limited input/output observability. In photonic tensor cores, for efficiency consideration, only
the final output signals after UΣV ∗ can be coherently detected. Intermediate signals of a single
unitary projection can not be easily read out without extra hardware support.

• Inaccessible gradients for most control variables. Due to the above two limitations, it is
challenging to obtain true derivatives w.r.t. the MZI rotation phases in U and V ∗ [41, 20, 17],
casting fundamental in-situ optimization difficulty as ONN scales up.

To enable in-situ self-learning for ONNs, the proposed synergistic framework L2ight provides a
scalable, efficient, and on-chip-implementable solution that overcomes those hardware restrictions.

3 Synergistic ONN On-Chip Learning Framework L2ight

In this section, we give a formal description of the ONN on-chip training problem and detailed
demonstration of our proposed three-stage learning flow L2ight, shown in Figure. 2.

(1) Identity Calibration (2) Parallel Mapping

Map 𝑼: Zeroth-Order Opt.Map 𝑼: Zeroth-Order Opt.

Map 𝚺: Optimal Singular-value 
Projection

Map 𝚺: Optimal Singular-value 
Projection

(3) Subspace Learning

In situ Backward 
Feedback Sampling

In situ Backward 
Feedback Sampling

Update 𝚺: Stochastic First-Order Opt.Update 𝚺: Stochastic First-Order Opt.
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Figure 2: Proposed three-stage ONN on-chip learning flow L2ight.

3.1 Understanding the ONN On-Chip Learning Problem

The ONN that supports on-chip learning is shown in Figure 3, constructed by local storage, control
units, interconnects, and photonic tensor cores with coherent I/O [32, 55] and wavelength-division
multiplexing (WDM) [54, 45] for parallel processing. The target is to optimize MZI phases Φ directly
on chip under variations. Formally the hardware-restricted learning problem is,

Φ∗ = argmin
Φ

L
(
W (ΩΓQ(Φ) +Φb);Dtrn

)
,

s.t. W (Φ) =
{
Wpq(Φpq)

}p=P−1,q=Q−1

p=0,q=0
, Wpq(Φpq) = Upq(Φ

U
pq)Σpq(Φ

S
pq)V

∗
pq(Φ

V
pq),

Upq(Φ
U
pq) = DU

pq

2∏
i=k

i−1∏
j=1

Rpqij(ϕ
U
pqij), V ∗

pq(Φ
V
pq) = DV

pq

2∏
i=k

i−1∏
j=1

Rpqij(ϕ
V
pqij),

Σpq(Φ
S
pq) = max(|Σpq|)diag(· · · , cosϕS

pq,i, · · · ), Φb ∼ U(0, 2π), Γ ∼ N (γ, σ2
γ).

(1)
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Figure 3: ONN architecture. PTC: photonic tensor core, GLB: global buffer, LCU: local control unit, EO:
electrical-to-optical conversion.

The linear projection in an ONN adopts blocking matrix multiplication, where the M ×N weight
matrix is partitioned into P×Q blocks of size k×k. During the optimization of Φ, we jointly consider
control resolution limits Q(·) [21, 41], device process variations Γ [21, 20, 17], thermal crosstalk
among adjacent devices Ω [20, 59], and unknown phase bias due to manufacturing error Φb for in-situ
robustness-aware training. A detailed non-ideality analysis is in Appendix A.3. For practicality,
robustness, and convergence consideration, we select k=9, which is explained in Appendix F.

3.2 Identity Calibration (IC): Variation-Agnostic Circuit State Preparation

After manufacturing, unknown process variations in waveguides make the initial state of PTCs unpre-
dictable [46, 59]. A primary task is to prepare U and V ∗ to be identity matrices. However, the calibra-
tion problem, i.e., minΦU ,ΦV

∑
p,q

(
∥Upq(Φ

U
pq)− I∥22 + ∥V ∗

pq(Φ
V
pq)− I∥22

)
, is not solvable given

the observability and controllability constraints on U and V ∗. The closest auxiliary problem that we
can solve is the one with absolute operations on unitaries, i.e., minΦU ,ΦV

∑
p,q

(
∥|Upq(Φ

U
pq)| −

I∥22 + ∥|V ∗
pq(Φ

V
pq)| − I∥22

)
. We denote those two mean square errors as MSEU and

MSEV . We rewrite it as a surrogate minimization of LIC that can lead to the same solution,
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Figure 4: (a) Identity calibration with sign flip. (b) Dif-
ferent ZO optimizers on identity calibration. (ZGD: ZO
gradient descent with momentum, ZCD: ZO coordinate de-
scent, ZTP: ZO three-point. B is best solution recording.)

min
Φ

∑
p,q

∥Upq(Φ
U
pq)ΣpqV

∗
pq(Φ

V
pq)Σ

−1
pq−I∥. (2)

The optimal solution for this auxiliary prob-
lem is U = V ∗ = Ĩ , where Ĩ is not guaran-
teed to be an identity matrix but a more general
sign-flipping matrix with arbitrary and unob-
servable sign flips on the same columns in
U and rows in V ∗, shown in Figure 4(a). We
adopt zeroth-order optimization (ZOO) on ΦU

and ΦV to calibrate U and V ∗ to approach Ĩ ,
shown in Figure 4(b). We show the converged solution of Eq. (2) with unobservable sign flips and
suboptimality only has marginal impacts on the following training procedure in later sections.

3.3 Parallel Mapping (PM): Alternate Projection-based Model Deployment

The target is to map the pre-trained weights W onto photonic MZI meshes W̃ (Φ) with high
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Figure 5: ZTP and ZCD-B perform the best in parallel mapping.
The optimal singular-value projection leads to significant error drop
and accuracy jump.)

fidelity. We formulate the parallel
mapping as a batched k × k-block-
wise regression problem,

min
Φ

∑
p,q

∥W̃pq(Φpq)−Wpq∥22. (3)

As analyzed before, ∂W
∂ΦU and ∂W

∂ΦV

are too expensive to compute in situ.
We propose a parallel mapping flow
with alternate zeroth-order optimiza-
tion on ΦU and ΦV . After conver-
gence, we will perform analytical op-
timal singular-value projection (OSP) to minimize the regression error given fixed singular vectors.
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We show why OSP gives the optimal solution under sign flips and how to perform it on the PTC.
Claim 1. Optimal singular-value projection (OSP): the optimal singular value problem, i.e., Σopt =
argminΣ ∥UΣV ∗ −W ∥, can be analytically solved on-chip with arbitrary and unknown sign flip.
Proof.

Σopt =diag
(
U−1W (V ∗)−1) = diag

(
U∗WV

)
= diag

(
(Ĩ∗V ∗W ∗UĨ)∗

)
. (4)

OSP can be directly achieved using the limited operation set, i.e., {U ,U∗,V ,V ∗}, supported by the
reciprocal PTC itself. Specifically, we configure V ∗ = Ĩ and Σ = I , and shine in a coherent WDM
light beam that carries W from right ports. Since the coherent photonic circuit is reciprocal [32], we
can read ĨU∗W on the left ports. Then we configure U = Ĩ and Σ = I , and shine in its adjoint
field from left, i.e., W ∗UĨ∗. We can directly read out the projected optimal diagonal on the right
because the sign flips in the unitary matrices naturally cancel out on the diagonal.

Figure 5 compares different ZO optimizers on this task. Coordinate-wise optimizers (ZCD [30] and
ZTP [13]) outperform the gradient-based ZGD [15] with higher accuracy and convergence speed. This
procedure is highly parallel and efficient since the mapping involves no stochasticity and only happens
locally within each PTC. We can also observe that OSP effectively reduces the normalized matrix
distance (∥W − W̃ ∥22/∥W ∥22) and boosts the accuracy by 2-5% almost for free.

3.4 Subspace Learning: Hardware-Aware Multi-Level Sparse Training

Besides mapping from an offline-trained model, L2ight also supports in-situ self-learning fully
on chip. We name this feature as subspace learning. To make L2ight hardware-aware, we trade
expensive full-space trainability for efficient subspace gradient evaluation, i.e., ∂L

∂Σ which coincides
with the general frequency-domain ONNs [18, 19] and subspace NN design concept [42]. Since
this learning stage involves stochasticity, it turns out to be the efficiency bottleneck, especially the
backward pass. Hence, we explore multi-level sparsity for efficient in-situ gradient approximation.

3.4.1 In-situ Subspace Gradient Acquisition via Reciprocity in Optics

...

...𝑥 

𝑽∗ 𝑰 𝑰  

𝑰 𝑦𝑉  

...

𝑼 𝑰 𝑰  

𝜕ℒ
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𝜕ℒ

𝜕𝑦Σ
 

Forward

Backward

𝜕ℒ

𝜕𝚺
=  𝑰 ∗

𝜕ℒ

𝜕𝑦Σ
  ⊙  𝑰 𝑦𝑉  

...

Figure 6: In-situ subspace gradient acquisition.

The conventional way to compute first-order gra-
dients w.r.t. Σ is ∂L

∂Σ = diag
(
U∗ ∂L

∂W V
)
. How-

ever, ∂L
∂W = ∂L

∂yx
T requires arbitrary matrix mul-

tiplication, which is not implementable by weight-
stationary PTCs. Hence, we remap it as,

∂L
∂Σ

=
∂L
∂yΣ

⊙ yV =
(
ĨU∗ ∂L

∂y

)
⊙ (ĨV ∗x). (5)

By shining in coherent WDM beams carrying the
inputs and upstream gradients forward and back-
ward through the reciprocal PTCs, respectively, as
shown in Figure 6, the weight gradients can be
efficiently obtained with lightweight element-wise
multiplication ⊙, which can be offloaded to elec-
trical control units. Note that Ĩ naturally cancels out by the Hadamard product with no impacts on
gradient fidelity.

3.4.2 Multi-Level Sparse Subspace Learning

Inspired by sparse backpropagation methods [43, 36, 48, 35, 38], we propose multi-level sparse
subspace learning to cut down both energy cost and total time steps in on-chip gradient evaluation.

Balanced Feedback Sampling. To improve the efficiency of the error feedback process, i.e., W T ∂L
∂y ,

as shown in Figure 7, we sample the feedback matrix W T ∈ RN×M with a structured sparse mask
PW = cW (SW ⊗ 1) generated by the Kronecker product between a boolean mask SW ∈ {0, 1}Q×P

with sparsity αW and an all-ones matrix 1, where the scaling factor cW is set to 1
αW

= PQ
Tr(ST

WSW )
for

unbiased estimation, proven in Appendix D. The efficiency benefits come from two aspects: (1) the
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Figure 8: Average gradient angular similarity with different feedback sparsity (a) and three normalization
methods (b). none, exp, and var represents no, expectation-maintained, and variance-maintained normalization.
Average gradient angular similarity with spatial and column sampling (c) and three normalization methods (d).

structurally masked PTCs are entirely idle, directly saving energy, and (2) the product accumulation
depth/step is reduced by a factor of αW , effectively trimming time steps.

However, two major downsides exist on traditional uniform and layer-wise topk sampling [38].
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feedback matrix sampling.

First, on a backward path, multiple feedback sampling opera-
tors will be cascaded, such that importance-unaware uniform
sampling can lead to an exponentially large variance [36].
Second, topk sampling is overly greedy and tends to break
the load balance as the feedback latency can be bottlenecked
by the longest partial product accumulation path, shown in
Figure 7. To tackle this, we propose a balanced top-K sam-
pling (btopk) to draw SW from a guided distribution that
locally prefers blocks with large Frobenius norm, which can
be efficiently evaluated by ∥Wpq∥2F = Tr(|Σpq|2). It strikes
a balance between gradient variance and bias by fine-grained
row-wise top-K sampling and eliminates load-imbalance by
guaranteeing the same sparsity for different rows of W T ,
i.e.,

∑
p SW (1, :) =

∑
p SW (2, :) = · · · =

∑
p SW (Q, :).

Figure 8(a), 8(b) shows the gradient approximation fidelity in
terms of average angular similarity [5] and normalized matrix
distance. Our btopk-sampled weight gradients align well with the true gradients. With the unbiased
(exp) normalization factor αW , btopk shows the best gradient angular similarity and inference
accuracy compared with others.

Information-Preserving Column Sampling. Input feature sparsification can also effectively cut
down the gradient evaluation cost [38, 36], especially for costly CONV layers. However, with tradi-
tional spatial sampling (SS) [38, 36], the input feature map x barely maintains its sparsity regularity
after being transformed to flattened patches X via im2col if the kernel size is larger than 1, shown in
Figure 9. Hence, we propose a novel column sampling (CS) as a better solution. We sample X using
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Figure 9: Spatial and column sampling for CONV.

a mask SC{0, 1}H
′W ′

with a uniform sparsity αC ,
which is shared across batches with negligible
overhead. This leads to both information preser-
vation and efficiency improvement. First, in Fig-
ure 9, a pixel appears in multiple columns, such
that partial information can be maintained after
column sampling. Second, this highly-structured
column dropping directly translates to less PTC
forward energy and fewer partial gradient accu-
mulation steps. In contrast, with a spatial mask
SS and spatial sparsity αS , the masked pixel will
be completely dropped with poor regularity after
im2col, at the cost of large variance due to infor-
mation loss and almost no runtime improvement
on this dense linear projection engines. Note that
for CONV1×1, CS turns out to be equivalent to
SS, which can simultaneously save memory and
runtime. Figures 8(c), 8(d) show that our proposed
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CS can obtain better gradient approximation fidelity than prior SS. Different normalization has small
effects on model accuracy since feature sampling only happens locally within each layer, without
any variance cascade effect. Note that simultaneous scaling by αW and αC tends to generate overly-
confident gradient approximation, which empirically leads to harmful gradient variance. Hence, we
will adopt αC=1 in all experiments.

Data Sampling. After parallel mapping, the ONN is initialized fairly close to the target pre-trained
model. It is reasonable and intuitive to calibrate it with a representative calibration set instead of the
entire training set. Inspired by the mini-batch dropping (SMD) technique [48], we integrate this SMD
technique into our framework to further explore data-level sparsity. Within one training epoch, we
randomly skip each iteration with probability αD, directly translating to training time reduction.

3.5 Complexity Analysis of Three Stages in L2ight

We assume the total step in IC, PM, and SL is T1, T2, and T3, respectively. The ONN has L layers,
each including an N ×N weight matrix partitioned into multiple k × k blocks.

Identity Calibration and Parallel Mapping. Each block optimizes k(k − 1) phases using ZOO.
All LN2/k2 blocks are optimized in parallel. The total step is 2k(k − 1)T1 for IC and 2LN2(k −
1)T2/k + 3 for PM. The total PTC call is around 2LN2T1 or 2LN2T2 for IC and PM, respectively.

Subspace Learning. We assume the feature map size is H ×W with a batch size of B. The detailed
complexity analysis is given in Appendix G. The total step is approximately T3LNBHW/k.

According to our training cost profiler, IC and PM in total is 3-order-of-magnitude cheaper than the
SL stage, since the batched parallel regression is deterministic and data-independent.

4 Results

4.1 Experiment Setup

Datasets. We evaluate L2ight on Vowel [10], MNIST [28], FashionMNIST [52], CIFAR-10, CIFAR-
100 [26], and TinyImagenet [7]. On CIFAR-10/100 and TinyImagenet, we adopt random crop, flip,
color jittering for augmentation.

Models. We evaluate on a customized MLP (8-16-16-4) [17] on Vowel, CNN-S (CONV8K3S2-
CONV6K3S2-FC10) [17] on MNIST, a CNN-L ({CONV64K3}×3-Pool5-FC10) on FashionMNIST,
and VGG-8 [8]/ResNet-18 1 [23] on CIFAR-10/100. CNN-L/FashionMNIST is used for ablation
studies. VGG-8/ResNet-18 on CIFAR-10/100 are used for accuracy and efficiency comparison.
Training details can be found in Appendix E.

Efficiency Evaluation. We assume fully parallel 9× 9-blocking matrix multiplication in photonic
tensor cores and sequential partial product accumulation in electronics. All experiments and perfor-
mance measurements are based on software simulation with various noise modeling. Our simulator
counts the total number of PTC calls as the normalized energy indicator and the longest accumulation
path as the normalized latency/runtime indicator. Details of profiling can be found in Appendix G.

4.2 Main Results

Scalability Comparison with Prior ONN Learning Protocols. Figure 10 compares L2ight with
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Figure 10: Compare scalability with prior protocols [20, 17].

two SOTA ONN on-chip training proto-
cols, FLOPS [20] and MixedTrn [17]. For
ZO methods, i.e., FLOPS and MixedTrn,
we count the energy and latency of for-
ward PTC query in Appendix G. Prior
protocols can only handle toy models
(∼2,000 params) given their algorithmic in-
efficiency and instability, while our L2ight
shows >1,000× higher scalability to han-
dle large ONNs (∼10 M) on challenging

1https://github.com/kuangliu/pytorch-cifar
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tasks with comparable accuracy to full-space pre-trained models. Though MixedTrn achieves com-
parable accuracy to L2ight on small benchmarks, we are still 1.7× faster and 6.9× more energy
efficient.

The superiority of L2ight provides three important insights: (1) decoupling ZOO from stochasticity
and partitioning a large-scale regression problem into a batch of sub-tasks can greatly mitigate the
curse of dimensionality both in convergence and efficiency. (2) mapping before learning can fully
leverage the pre-trained model to reduce the learning cost. Prior methods have to learn from a severely
corrupted solution under variations, while L2ight recovers most accuracy via mapping, leaving a
very light workload for subspace learning. (3) Restricted subspace learning provides adequate degree
of freedom for training from scratch and task transfer. Also, its compatibility with first-order methods
significantly boosts the trainability and breaks the scalability barrier for ONN training. We now
validate the above insights by extensive experiments.

Training Efficiency Comparison with Prior Sparse Training Methods. In Figure 11, we show
accuracy and efficiency comparison of 1) baseline L2ight-SL (BS), 2) L2ight-SL with spatial
sampling (RAD), 3) L2ight-SL with weight and spatial sampling (SWAT-U), and 4) L2ight-SL with
all three introduced sampling methods (feedback, column, and data sampling), and 5) our proposed
full flow with IC, PM, and sparse SL (L2ight). To clarify, L2ight-SL performs subspace learning
on-chip from scratch without using pre-trained weights, while L2ight includes the full flow, i.e.,
pre-training, mapping, and on-chip training. When we perform subspace learning from scratch, our
proposed multi-level sampling strategies outperform previous RAD and SWAT-U by ∼3× in hardware
cost with comparable accuracy. Though RAD can save the forward peak memory, it leaves the most
expensive backward pass unoptimized, which does not fully exploit the sparsity in ONN training.
SWAT-U tries to save forward cost by simultaneously sparsifying the forward and feedback weights
with shared masks/patterns. However, in our experiment, the forward sparsification considerably
degrades the model performance, which dilates the efficiency benefits from it. Parallel mapping can
fully leverage the pre-trained weights and help our full three-stage flow L2ight achieve the best
accuracy with much faster convergence, leading to over 30× higher energy efficiency and fewer time
steps.
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Figure 11: Accuracy and hardware efficiency comparison on VGG-8 (left) and ResNet-18 (right).

Note that the energy efficiency and latency improvement is not just on the photonic part but a
systematic performance boost. Our three-level sampling methods directly skip the pruned block,
which means the corresponding cost of memory transaction, computation, control, and communication
are removed together. Therefore, the sampling sparsity can be directly translated to the energy/latency
improvement ratio regardless of whether the electrical part dominates the total cost.

4.3 Ablation Studies and Discussion

4.3.1 Multi-Level Sparsity in Efficient Training

Feedback Sparsity. To investigate the impact of feedback sampling strategies, we visualize the
gradient approximation fidelity and accuracy curves in Figure 12(a). uniform sampling shows
varying performance under different sparsity values due to large gradient variances. topk shows
worse performance after sufficient steps due to its biased gradient estimation from overly greedy
block selection. In contrast, our proposed load-balancing btopk strikes a balance between variance
and bias via block-wise sampling and also leads to less runtime as it forces load balance among
massively parallel PTCs. In Table 2, feedback sampling saves 50-60% time steps on the most costly
error feedback∇xL, leading to 1.5-1.8× overall time step reduction with minimum accuracy drop.

Feature Sparsity. Figure 12(b) compares the accuracy and weight gradient computation time steps
on two feature sampling techniques. Though spatial sampling (ss) can save peak storage by dropping
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Figure 12: Accuracy v.s. weight gradient computation steps with three feedback sampling strategies (a)
and different feature sampling techniques (b). Accuracy (93.02%) from a full-space trained model (green).
CNN-L/FashionMNIST is used for (a) and (b). Compare different data sampling sparsity (c).

a subset of activations during the forward pass, it shows no gradient computation step reduction. Our
hardware-friendly column sampling (cs) directly leads to energy and runtime reduction due to its
structured sparsity. In Table 2, when column sampling is further added, we observe ∼50% PTC
energy saving on weight gradient computation∇ΣL at the cost of ∼1% accuracy drop.

Data Sparsity. In the data level, we also demonstrate how SMD with sparsity αD impacts the training
efficiency in Figure 12(c). With the best selected αW and αC , data sparsity directly reduces training
time by skipping iterations [48]. The data sampling selects a uniform subset of the training set to
represent the original data distribution, leading to less data processing with comparable generalization
in the extracted features. Another explanation is that the variance increased by partial replacement
serves as a regularization mechanism to improve the model performance [48]. For relatively easy tasks,
aggressive sparsity (αD=0.8) is a sweet point, while for larger datasets shown in Table 2, a medium
sparsity (0.5) can be a good setting to balance both the training cost and accuracy. With all three
sampling methods integrated, our L2ight-SL shows competitive accuracy and ∼3× higher efficiency
than RAD and SWAT-U. More advanced dataset sampling methods are left for future exploration.

4.3.2 Learnability of Restricted Subspace ONNs

Impacts of Calibration/Mapping Quality. Table 2 shows that with IC and PM, the full L2ight flow
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Figure 13: Impact of mapping
accuracy (VGG-8 CIFAR-10 with
αW =αC=0.6, αD=0.5). acc-NI is the
curve with non-ideal Ĩ .

achieves the highest accuracy with 32-35× efficiency boost over
baselines. We further evaluate the impact of different mapping
accuracy and the calibration quality on subspace learning in
Figure 13. First, parallel mapping or pre-training is not a
must. Our subspace learning supports first-order optimization
on-chip from random initialization. Second, the optimality on
subspace bases influences the final accuracy as it determines
the upper bound of accuracy that can be recovered by subspace
learning. With roughly optimized space bases, i.e., U ,V ∗,
subspace learning can efficiently train basis coefficients, i.e., Σ,
achieving 5-6% higher accuracy and 9.9× less energy and steps
compared with random unitaries (train from scratch). Third,

Table 2: Compare sampling strategies on CIFAR-10 in terms of accuracy, activation size reduction, energy,
and time step. Forward, weight gradient, and error feedback are denoted as L, ∇ΣL, and ∇xL. L2ight-SL is
learning from scratch, and L2ight (IC→PM→SL) is the full flow with pre-trained weights and non-ideal Ĩ .

Acc±σ (%) Act↓(%) Norm. PTC Energy Norm. #Step
L ∇ΣL ∇xL Total (Ratio) L ∇ΣL ∇xL Total (Ratio)

L2ight-SL (Baseline) VGG-8 86.66±0.13 - 8.58 17.16 8.34 34.08 (1.00) 32.64 5.49 92.02 130.14 (1.00)
+ Feedback Sampling (αW =0.6) 86.41±0.25 - 8.58 17.16 3.38 29.13 (1.17) 32.64 5.49 35.76 73.89 (1.76)

+ Column Sampling (αC=0.6) 85.58±0.01 - 8.58 7.16 3.38 19.12 (1.78) 32.64 4.67 35.76 73.07 (1.78)
+ Data Sampling (αD=0.5) 84.45±0.45 - 4.29 3.58 1.69 9.56 (3.56) 16.32 2.34 17.89 36.54 (3.56)

+ RAD [36] (αS=0.85) 83.68±0.58 11.78 8.58 17.16 8.34 34.08 (1.00) 32.64 5.49 92.02 130.14 (1.00)
+ SWAT-U [38] (αW =0.3, αS=0.6) 73.91±0.27 8.31 6.01 17.16 5.84 29.01 (1.17) 25.98 5.49 82.19 113.66 (1.15)
L2ight (IC→PM→SL) 90.20±0.05 - 0.43 0.36 0.17 0.96 (35.64) 1.63 0.23 1.79 3.65 (35.64)
L2ight-SL (Baseline) ResNet-18 92.37±0.08 - 72.24 144.49 93.60 310.33 (1.00) 463.40 27.23 1,478.84 1,969.48 (1.00)
+ Feedback Sampling (αW =0.5) 91.35±0.03 - 72.24 144.49 48.13 264.86 (1.17) 463.40 27.23 747.22 1,237.85 (1.59)

+ Column Sampling (αC=0.5) 90.02±0.16 4.47 72.24 72.49 48.13 192.86 (1.61) 463.40 15.68 747.21 1,226.30 (1.61)
+ Data Sampling (αD=0.5) 89.07±0.04 4.47 36.13 36.26 24.07 96.46 (3.22) 231.76 7.84 373.71 613.31 (3.21)

+ RAD [36] (αS=0.9) 89.44±0.17 46.60 72.26 143.72 93.60 309.58 (1.00) 463.53 26.03 1,478.84 1,969.00 (1.00)
+ SWAT-U [38] (αW =0.3, αS=0.5) 89.21±0.16 25.89 50.57 143.64 65.52 259.73 (1.19) 358.40 26.56 1,417.96 1,802.00 (1.09)
L2ight (IC→PM→SL) 93.91±0.02 4.47 3.61 3.62 2.41 9.64 (32.20) 23.16 0.78 37.34 61.29 (32.13)
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subspace optimization shows low sensitivity on mapping quality and is able to compensate for the
suboptimality in singular vectors within a reasonable range. Even with 60% mapped accuracy,
singular value optimization has enough capability to recover the accuracy to ∼90%. Fourth, our
subspace learning is robust to gradient noises caused by non-ideal Ĩ (MSEU≈MSEV≈0.013),
which shows that L2ight can tolerate reasonable suboptimality in the calibration and mapping stages.

In-situ Transferability in the Restricted Subspace. Another important question to answer is the
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Figure 14: (a) Transfer VGG8/Res18 from CIFAR-100 to CIFAR-
10. (b) Transfer Res18 from TinyImagenet to CIFAR-10 and 100.

transferability of subspace learning.
After mapping, we fix the inherited
unitaries and adapt to different tasks
by only training the singular val-
ues. Figure 14 shows that the inher-
ited bases span a good design space
with enough transferability. The in-
situ subspace transfer learning shows
1-2% higher final accuracy. Also,
it uses 3∼5× fewer steps to ob-
tain the same accuracy as training
from scratch. Hence, our proposed
L2ight finds a highly trainable de-
sign point while the learnability is
still mostly maintained.

5 Conclusion

In this work, we propose the first scalable and efficient on-chip learning framework L2ight for
emerging optical neural networks. Our proposed three-stage flow synergistically enables on-chip
self-learning via automatic circuit state calibration, parallel model mapping, and efficient subspace
learning. To further improve the learning efficiency, we explore multi-level sparsity, including
balanced feedback sampling, information-preserving column feature sampling, and runtime-reduced
data sampling. Extensive ablation studies and comparison experiments show 3-order-of-magnitude
scalability improvement over prior on-chip training protocols and 30× efficiency boost compared
with previous sparse training methods. In the future, we will go beyond current software simulation
and experimentally validate the effectiveness of L2ight on real photonic neural chips.
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A ONN Principles

A.1 Mach-Zehnder Interferometers (MZIs)

A basic coherent optical component used in this work is an MZI. One of the most general MZI
structures is shown in Figure 15, consisting of two 50-by-50 optical directional couplers and four
phase shifters θT , θL, ωP , and ωW . An MZI can achieve arbitrary 2×2 unitary matrices SU(2). The

 

𝜃𝑇  

𝜃𝐿  

𝜔𝑃  

𝜔𝑊  

Figure 15: 2-by-2 MZI with top (T), left (L), upper (P), and lower (W) phase shifters.

physical transfer matrix R(θg,∆θ,∆ω) of an MZI shown in Fig. 15 is,

SU(2) = R(θg,∆θ,∆ω) =

(
t kj
kj t

)(
ejωP 0
0 ejωW

)(
t kj
kj t

)(
ejθT 0
0 ejθL

)
= ejθg

(
sin ∆ω

2
cos ∆ω

2

cos ∆ω
2

− sin ∆ω
2

)(
ej

∆θ
2 0

0 e−j ∆θ
2

)
,

θg = θ̄ + ω̄ +
π

2
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θT + θL
2

, ω̄ =
ωP + ωW

2
,

∆θ = θT − θL, ∆ω = ωP − ωW , t = k =

√
2

2
.

(6)

where the global phase θg is determined by the common mode θ̄ and ω̄, and the light splitting is
determined by the differential mode ∆θ and ∆ω. To achieve the 2-D planar rotator R(2) in the real
space parametrized by ϕ, we let θT = π/2, θL = 3π/2, ω̄ = π. To convert the simplified transfer
matrix M(∆ω) to the planar rotator, we set ∆ω = π − 2ϕ as follows,

R(2) =ej
3π
2

(
sin ∆ω

2
cos ∆ω

2

cos ∆ω
2

− sin ∆ω
2

)(
j 0
0 −j

)
=
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sin (π−2ϕ

2
) − cos (π−2ϕ

2
)

cos (π−2ϕ
2

) sin (π−2ϕ
2

)

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)
.

(7)

A.2 MZI-based Photonic Tensor Core Architecture

By cascading N(N − 1)/2 MZIs into a triangular mesh (Recks-style) or rectangular mesh (Clements-
style), we can construct arbitrary N ×N unitary U(N).

As a simple example, we show the principle of Recks-style MZI array for a simple demonstration. A
similar decomposition can be derived for the Clements style. It decomposes an M ×N weight matrix
using SVD, i.e., W = UΣV ∗. The diagonal matrix Σ can be simply implemented by on-chip
attenuators, e.g., single-port MZIs, to perform signal scaling. The unitary matrices U and V ∗ can be
realized by a cascaded MZI triangular array [39]. The unitary group parametrization is given by,

U(N) = D

2∏
i=N

i−1∏
j=1

Rij(ϕij), (8)

where D is a diagonal matrix with ±1 on its diagonal entries, and the 2-dimensional planar rotator
Rij(ϕij) is an n-dimensional identity matrix where entries on (i,i), (i,j), (j,i), (j,i) are cosϕij ,
-sinϕij , sinϕij , cosϕij , respectively. Each rotator Rij can be implemented by a 2×2 MZI that
produces unitary interference of input light signals with a rotation angle ϕ as we show before.

A.3 Optical Circuit Non-ideality

Rotation Quantization. Given the control resolution limits, we can only achieve discretized MZI
rotation phase configurations. We assume the phases ϕ is uniformly quantized into b-bit within [0,2π],
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Q(ϕ) = Round
( ϕ mod 2π

2π/(2b − 1)

) 2π

2b − 1
. (9)

We assume 8-bit quantization for phases of U and V ∗. For Σ matrices, we assume larger bitwidths
can be affordable and practical.

Phase shifter Variation. Due to manufacturing error and thermal noises, the phase shift ϕ caused by
a phase shifter is proportional to the device-related parameter, ϕ ∝ γ. Assume the real coefficient
drifts from the theoretical value γ by ∆γ, the real phase shift will become ϕ̃ = γ+∆γ

γ ϕ. We assume
∆γ ∼ N (0, 0.0022). We denote this multiplicative error for all phase shifters as a diagonal Γ matrix,
such that the non-ideal phase shifts become Φv = ΓΦ.

MZI Crosstalk. Due to signal crosstalk, adjacent MZIs will have mutual coupling effects, such that
the part of the phase shift ϕ for the i-th MZI will partially contribute to its neighboring MZI ϕj with
a factor of ωi,j . This crosstalk effect can be simply modeled as coupling matrix Ω,


ϕc
0

ϕc
1

...
ϕc
N−1

 =


ω0,0 ω0,1 · · · ω0,N−1

ω1,0 ω1,1 · · · ω1,N−1

...
...

. . .
...

ωN−1,0 ωN−1,1 · · · ωN−1,N−1




ϕv
0

ϕv
1

...
ϕv
N−1


s.t. ωi,j = 1, ∀ i = j

ωi,j = 0, ∀ i ̸= j and ϕj ∈ P (10)
0 ≤ ωi,j < 1, ∀ i ̸= j and ϕj ∈ A.

The diagonal factor ωi,j , i = j is the self-coupling coefficient. ωi,j , i ̸= j is the mutual coupling
coefficient [31, 20, 17]. We assume the self-coupling coefficient to be 1, and the mutual coupling
coefficient is 0.005 for adjacent MZIs.

B Intractable Gradients for MZI Rotations

To optimize the MZI meshes, a straightforward idea is to use first-order methods to optimize all
rotations phases ΦU , ΦV , and ΦΣ. The analytical gradients for phases in unitary matrices are shown
as,

∂L
∂Rij

=
(
DRn1Rn2Rn3

)T∇yL xT ( · · ·R32R21ΣV ∗)T
∂L
∂ϕij

= Tr

(( ∂L
∂Rij

⊙ ∂Rij

∂ϕij

)
(ei + ej)(ei + ej)

T

)
.

(11)

Therefore, it is prohibitively expensive to derive the analytical phase gradients, which is one of the
key motivations for our subspace optimization method.

C Detailed Description of the Proposed Parallel Mapping Algorithm

We give a detailed description of our parallel mapping algorithm. Zeroth-order coordinate descent
(ZCD) is used as an example. In line 4, we first derive and implement the optimal theoretical singular
values and initialize ΦU and ΦV using the decomposed values. In lines 8-13, we use ZCD to alternately
optimize phases in U and V ∗ under all non-ideal effects till convergence. The step size is strictly
bounded by the smallest phase control resolution. Exponential decay is used to quickly reduce the
learning rate to avoid divergence. Note that cosine-annealing will not work since the ZO descent will
rapidly converge given its greedy search nature. Then at the end, due to the suboptimality in ZCD, we
will perform OSP to find the current optimal singular values that minimize the mapping error given
the trained UT and V ∗,T .

15



Algorithm 1: Parallel Mapping with ZCD and OSP

Input :Mapping loss LM , mapping target W , total iterations T , inner ZCD iterations S, step
size decay factor β, ZCD step size upper bound δϕu = 2π

2min(bl,b)−1
, ZCD step size

lower bound δϕl =
2π

2min(bm,b)−1

1 δϕ = δϕu;
2 for Weight block Wpq ∼W do
3 Step 1: SVD and Parametrization via Eq. (1);
4 Upq(Φ

U
pq),Σpq(Φ

S
pq),V

∗
pq(Φ

V
pq) = UP

(
SVD(Wpq)

)
;

5 Step 2: ZCD on Upq,V
∗
pq;

6 for t← 0 · · ·T − 1 do
7 for s← 0 · · ·S − 1 do
8 Randomly sample a phase ϕ ∼ {ΦU

pq,Φ
V
pq};

9 if LM
pq(ϕ

tS+s + δϕ) < LM
pq(ϕ

tS+s) then
10 ϕtS+s+1 ← ϕtS+s + δϕ;
11 else
12 ϕtS+s+1 ← ϕtS+s − δϕ;
13 δϕ← max(δϕ/β, δϕl);
14 Step 3: Optimal Projection on Σpq;
15 Σpq ← diag(Ĩ∗U∗

pqWpqVpqĨ);
Output :Converged phases ΦM

D Prove of Unbiased Gradient Approximation with Feedback and Feature
Sampling

Claim 2. Considering the l-th layer with input x ∈ RN and pre-activation y ∈ RM , we denote

the blocking weight matrix as W = {Wpq}
P=M

k ,Q=N
k

p,q=1,1 and nonlinear activation as σ. During
backward, we randomly sample the feedback matrix W T ∈ RN×M with a structured sparse mask
PW = cW (SW ⊗ 1). A similar sampling matrix Px is applied to input features. The estimated
gradients are unbiased, i.e., E[

(
∂L
∂Σ

)
S ] =

∂L
∂Σ .

Proof. Given E[P] = 1, we have

E[(W T
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E[
( ∂L
∂yl

)
SWl

] =E
[
σ′
l

L−1∏
i=l+1

((W T
i )SWl

⊙ σ′
i)(W

T
L )SWl

∂L
∂yL

]
=

∂L
∂yl

E
[( ∂L

∂Σl

)
S

]
=E
[
U∗( ∂L

∂yl

)
SWl

(xT
l )Sxl

V
]
=

∂L
∂Σl

.

(13)

E Training Details

We implement ONN simulation, all models, and training logic in PyTorch 1.8.1. All experiments are
conducted on a machine with an Intel Core i7-9700 CPU and an NVIDIA Quadro RTX 6000 GPU. For
identity calibration, we set the epoch to 400 with an initial learning rate of 0.1, a decay rate of 0.99, and
a phase resolution of 8 bit. For parallel mapping, we set the epoch to 300 with an initial learning rate
of 0.1, a decay rate of 0.99, and a phase resolution of 8 bit. For subspace learning, we adopt AdamW
as the optimizer with a learning rate of 0.002 and a weight decay rate of 0.01 for subspace learning
from scratch. Epochs are set to 100 for MNIST, FashionMNIST training, 200 for CIFAR-10/100,
and TinyImageNet. For subspace learning after mapping, we reduce the epoch to 20 and the learning
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rate to 0.0002. We use cosine-annealing as the learning rate scheduler. When compared with prior
on-chip learning protocols, we adopt the recommended settings for FLOPS and MixedTrn in [21, 17].
For FLOPS, the total epochs are set to 50, the initial learning rate is 2, and the gradient samples are set
to 5. For MixedTrn, we train for 20 epochs, the mixed-training sparsity is set to 0.4, the parameter
sparsity is set to 0.1, and the initial learning rate is set to 0.02. When compared with prior sampling
methods, we apply uniform spatial sampling with expectation-maintained normalization for RAD [36].
For SWAT-U [38], we apply uniform spatial feature sampling without normalization and uniform
weight matrix sampling with expectation-maintained normalization. Since we only perform efficient
training, we turn off any sampling in inference.

F MZI Array Scaling

A single MZI array has a limited size due to its high area cost, e.g., up to 32 or 64. However, this is not
an issue for our framework. Multi-core systems with small subarrays are trends for analog computing,
which is the design concept of our accelerator in Figure 3. Multiple PTCs are interconnected to
support a large tensor computation in parallel. Therefore, our system’s performance will not be
limited by the scale of a single PTC. Actually, partitioning a large tensor operation into small chunks
is widely adopted and recently considered as a better solution than large array sizes due to noise
robustness consideration.

We adopt 9×9 blocks based on the following considerations.

Hardware practicality. The largest commercial demonstration of optical neural chips is 32×32 so
far. 9×9 is a practical, robust, and efficient setting according to recent experimental demonstrations.

Robustness. Larger MZI arrays will cause severe phase error accumulation effects. Cascaded phase

Blk size 8 9 12 16 24 32

Rel. Err. 0.025 0.032 0.043 0.061 0.094 0.126
std. 2e-4 3e-4 3e-4 5e-4 9e-4 1e-3

Table 3: Relative matrix error with different MZI
array sizes.

error will cause non-trivial fidelity and robust-
ness issues as block size increases. 9×9 is
generally a robust design configuration when
cascaded noises are still tolerable. Here we
show a table of noise-induced errors (relative
matrix distance) with various block sizes on
a 256×256 weight matrix. Std. is calculated
based on 20 runs. Phase shifter gamma noise std=0.002, crosstalk factor=0.005, quantization
bitwdith=8-bit. We observe large array sizes are noise-sensitive in general.

ZOO Convergence. IC and PM are zeroth-order optimization techniques. Each block indicates an
optimization instance. A larger block size will have negative impacts on the optimization convergence

Blk size 8 9 12 16 24 32

(MSEU +MSEV )/2 0.0135 0.013 0.03 0.039 0.04 0.045

Table 4: IC optimality with different array sizes.

and solution optimality, which is the in-
trinsic limitation of most zeroth-order op-
timizers. In the IC procedure, for relatively
large block sizes, our ZO optimizers, unfor-
tunately, will have solution quality degra-
dation due to the curse of dimensionality and efficiency degradation due to low parallelism. Here we
show how solution quality in identity calibration changes with various block sizes. 9×9 block is a
good selection with high solution quality.

Parameter Space. Subspace learning only optimizes the singular values while U and V are fixed.
For an N ×N weight matrix with k × k blocks, only N2/k singular values are trainable. Increasing

Blk size 8 9 12 16 24 32

Accuracy 84.26 84.45 83.36 81.27 80.68 78.40

Table 5: Subspace learning accuracy with different
block sizes.

the block size k will decrease the param-
eter space. According to the experience
from the field of structured/subspace neu-
ral networks, e.g., block-circulant neu-
ral nets, the block size is typically set
to a number around 8. Here we add
new results on L2ight-SL (αW =αC=0.6,
αD=0.5) CIFAR-10 VGG8 with various block sizes. According to our experiments below, 16×16
blocks already show inadequate trainability due to overly small parameter space, leading to a clear
accuracy drop. In conclusion, we recommend using multiple interconnected 9×9 PTCs for par-
allel computing, since this choice of 9×9 block balances both systematic performance, hardware
complexity, robustness, and on-chip trainability.
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G Hardware Cost Evaluation

G.1 PTC Energy Estimation

For simplicity, we count the number of PTC calls as the indicator to the total energy estimation
of the PTC cluster. For example, we focus on a 2-D convolutional layer with kernel shape of
Cout×Cin×K×K, input feature size B×Cin×H×W output feature size of B×Cout×H ′×W ′.
We partition the unfolded weight matrix into P×Q blocks with size of k×k and assign each to a PTC.
We have P = ⌈Cout

k ⌉ and Q = ⌈Cin×K2

k ⌉. Each PTC can utilize k wavelengths to achieve parallel
processing. Now we give detailed computation of energy breakdown per optimization iteration.

Forward Energy = CoutCinK
2BH ′W ′

Backward Weight Energy = 2Tr(ST
CSC)BPQ

Backward Input Energy = Tr(ST
WSW )BHW.

(14)

Note that in backward weight energy, we double the PTC call since the in-situ subspace gradient
acquisition requires 2 PTC calls.

G.2 Total Time Step Estimation

We assign k electrical adders for each PTC to implement sequential cross-PTC reduction and parallel
local accumulation. Each PTC call counts as one step, each partial product/gradient accumulation
stage counts as one step, and the Hadamard multiplication in gradient computation also counts as one
step. Given this assumption, we derive the time step as,

Forward Step = (Q− 1)+BH ′W ′ + ⌈BH ′W ′

k
⌉

Backward Weight Step = 4Tr(ST
CSC)B

Backward Input Step =


⌈Cin

P
⌉⌈log2 2k⌉⌈

1

2
max

q

((∑
SW (q, :)− 1

)
+

)
⌉BHW, K > 1, stride < K

max
q

((∑
SW (q, :)− 1

)
+

)
BH ′W ′, K = 1

(15)

G.3 WDM Dispersion Discussion

Theoretically, coherent photonic circuits will have slightly different phase responses to different
working wavelengths. However, we claim that this frequency-specific phase shift has minimum
impacts on our learning procedure.

Negligible Dispersion. Our PTC core is intentionally designed to have a small-scale, i.e., 9×9.
Hence we require 9 wavelengths in our framework. This avoids too many wavelengths being used.
Therefore, the spectrum range will be relatively small. Conservatively we assume 8 nm between
the furthest two wavelengths. Based on the phase response equation, ∆ϕ(λ) = 2πneff (λ)L/λ, this
leads to a maximum 1-2% phase difference for the furthest two wavelengths. On a small MZI array,
this phase difference will only cause negligible transfer function drift. We simulate this effect when
the weight block size is set to 9×9 and inject 1-2% dispersion-induced MZI phase response drift; the
transfer matrix has 0.5% relative error and 0.5% mean square error. Compared with the gradient
approximation error caused by our three-level sparse sampling, phase variation, and thermal crosstalk,
shown in Fig. 8, this slight drift caused by WDM dispersion is negligible.

High Non-ideality Tolerance. Our experiments show that first-order subspace learning is very
robust to all these gradient approximation errors. With all the above non-ideality, the approximated
gradient directions are still well-aligned with the true gradients. The on-chip learning procedure
works as expected even when WDM dispersion effects are considered. This effect can be considered
in-situ when using WDM on MZI array training, therefore, the model can tolerate this non-ideal
effect without inference accuracy degradation.

Dispersion-free Devices. In the literature, there are WDM dispersion-free MZI devices being
proposed [12]. Within the 45nm range, the coefficient of phase shifters can be maintained. Thus, the
phase response to 9 different wavelengths can be compensated to almost the same response. This
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further shows that WDM dispersion is not a major concern for our assumed ONN architecture and
proposed training flow.
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